865 research outputs found

    Optimal life insurance purchase, consumption and investment on a financial market with multi-dimensional diffusive terms

    Get PDF
    We introduce an extension to Merton’s famous continuous time model of optimal consumption and investment, in the spirit of previous works by Pliska and Ye, to allow for a wage earner to have a random lifetime and to use a portion of the income to purchase life insurance in order to provide for his estate, while investing his savings in a financial market comprised of one risk-free security and an arbitrary number of risky securities driven by multidimensional Brownian motion. We then provide a detailed analysis of the optimal consumption, investment, and insurance purchase strategies for the wage earner whose goal is to maximize the expected utility obtained from his family consumption, from the size of the estate in the event of premature death, and from the size of the estate at the time of retirement. We use dynamic programming methods to obtain explicit solutions for the case of discounted constant relative risk aversion utility functions and describe new analytical results which are presented together with the corresponding economic interpretations.We thank the Calouste Gulbenkian Foundation, PRODYN-ESF, POCTI and POSI by FCT and Ministerio da Ciencia, Tecnologia e Ensino Superior, CEMAPRE, LIAAD-INESC Porto LA, Centro de Matematica da Universidade do Minho and Centro de Matematica da Universidade do Porto for their financial support. D. Pinheiro's research was supported by FCT - Fundacao para a Ciencia e Tecnologia program 'Ciencia 2007' and project 'Randomness in Deterministic Dynamical Systems and Applications' (PTDC/MAT/105448/2008). I. Duarte's research was supported by FCT - Fundacao para a Ciencia e Tecnologia grant with reference SFRH/BD/33502/2008

    Relative Value Iteration for Stochastic Differential Games

    Full text link
    We study zero-sum stochastic differential games with player dynamics governed by a nondegenerate controlled diffusion process. Under the assumption of uniform stability, we establish the existence of a solution to the Isaac's equation for the ergodic game and characterize the optimal stationary strategies. The data is not assumed to be bounded, nor do we assume geometric ergodicity. Thus our results extend previous work in the literature. We also study a relative value iteration scheme that takes the form of a parabolic Isaac's equation. Under the hypothesis of geometric ergodicity we show that the relative value iteration converges to the elliptic Isaac's equation as time goes to infinity. We use these results to establish convergence of the relative value iteration for risk-sensitive control problems under an asymptotic flatness assumption

    Use of approximations of Hamilton-Jacobi-Bellman inequality for solving periodic optimization problems

    Full text link
    We show that necessary and sufficient conditions of optimality in periodic optimization problems can be stated in terms of a solution of the corresponding HJB inequality, the latter being equivalent to a max-min type variational problem considered on the space of continuously differentiable functions. We approximate the latter with a maximin problem on a finite dimensional subspace of the space of continuously differentiable functions and show that a solution of this problem (existing under natural controllability conditions) can be used for construction of near optimal controls. We illustrate the construction with a numerical example.Comment: 29 pages, 2 figure

    Time scales and exponential trends to equilibrium: Gaussian model problems

    Get PDF
    We review results on the exponential convergence of multi- dimensional Ornstein-Uhlenbeck processes and discuss related notions of characteristic timescales with concrete model systems. We focus, on the one hand, on exit time distributions and provide ecplicit expressions for the exponential rate of the distribution in the small noise limit. On the other hand, we consider relaxation timescales of the process to its equi- librium measured in terms of relative entropy and discuss the connection with exit probabilities. Along these lines, we study examples which il- lustrate specific properties of the relaxation and discuss the possibility of deriving a simulation-based, empirical definition of slow and fast de- grees of freedom which builds upon a partitioning of the relative entropy functional in conjuction with the observed relaxation behaviour

    The impact of current CH4 and N2O atmospheric loss process uncertainties on calculated ozone abundances and trends

    Get PDF
    The atmospheric loss processes of N2O and CH4, their estimated uncertainties, lifetimes, and impacts on ozone abundance and long-term trends are examined using atmospheric model calculations and updated kinetic and photochemical parameters and uncertainty factors from SPARC [2013]. The uncertainty ranges in calculated N2O and CH4 global lifetimes computed using the SPARC estimated uncertainties are reduced by nearly a factor of two compared with uncertainties from Sander et al. [2011]. Uncertainties in CH4 loss due to reaction with OH and O(1D) have relatively small impacts on present day global total ozone (±0.2-0.3%). Uncertainty in the Cl + CH4 reaction affects the amount of chlorine in radical vs. reservoir forms and has a modest impact on present day SH polar ozone (~±6%), and on the rate of past ozone decline and future recovery. Uncertainty in the total rate coefficient for the O(1D) + N2O reaction results in a substantial range in present day stratospheric odd nitrogen (±20-25%) and global total ozone (±1.5-2.5%). Uncertainty in the O(1D) + N2O reaction branching ratio for the O2 + N2 and 2*NO product channels results in moderate impacts on odd nitrogen (±10%) and global ozone (±1%),with uncertainty in N2O photolysis resulting in relatively small impacts (±5% in odd nitrogen, ±0.5% in global ozone). Uncertainties in the O(1D) + N2O reaction and its branching ratio also affect the rate of past global total ozone decline and future recovery, with a range in future ozone projections of ±1-1.5% by 2100, relative to present day

    On Exceptional Times for generalized Fleming-Viot Processes with Mutations

    Full text link
    If Y\mathbf Y is a standard Fleming-Viot process with constant mutation rate (in the infinitely many sites model) then it is well known that for each t>0t>0 the measure Yt\mathbf Y_t is purely atomic with infinitely many atoms. However, Schmuland proved that there is a critical value for the mutation rate under which almost surely there are exceptional times at which Y\mathbf Y is a finite sum of weighted Dirac masses. In the present work we discuss the existence of such exceptional times for the generalized Fleming-Viot processes. In the case of Beta-Fleming-Viot processes with index α∈ ]1,2[\alpha\in\,]1,2[ we show that - irrespectively of the mutation rate and α\alpha - the number of atoms is almost surely always infinite. The proof combines a Pitman-Yor type representation with a disintegration formula, Lamperti's transformation for self-similar processes and covering results for Poisson point processes

    A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow

    Get PDF
    In this paper we present a Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an Eikonal equation to determine the weighted distance to the exit. We consider this model in presence of small diffusion and discuss the numerical analysis of the proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small diffusion on the exit time with various numerical experiments

    Systemic Risk and Default Clustering for Large Financial Systems

    Full text link
    As it is known in the finance risk and macroeconomics literature, risk-sharing in large portfolios may increase the probability of creation of default clusters and of systemic risk. We review recent developments on mathematical and computational tools for the quantification of such phenomena. Limiting analysis such as law of large numbers and central limit theorems allow to approximate the distribution in large systems and study quantities such as the loss distribution in large portfolios. Large deviations analysis allow us to study the tail of the loss distribution and to identify pathways to default clustering. Sensitivity analysis allows to understand the most likely ways in which different effects, such as contagion and systematic risks, combine to lead to large default rates. Such results could give useful insights into how to optimally safeguard against such events.Comment: in Large Deviations and Asymptotic Methods in Finance, (Editors: P. Friz, J. Gatheral, A. Gulisashvili, A. Jacqier, J. Teichmann) , Springer Proceedings in Mathematics and Statistics, Vol. 110 2015
    • …
    corecore